Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 2: Novel system Architecture, Information/Knowledge Representation, Algorithm Design and Implementat
نویسنده
چکیده
According to literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA ⊃ GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the Quality Indexes of Operativeness (OQIs) of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. Based on an original multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/GEOOIA approaches, the first part of this work promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based (inductive) image segmentation to symbolic physical model-based (deductive) image preliminary classification capable of accomplishing image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the present second part of this work, a novel hybrid (combined deductive and inductive) RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a) computational theory (system design), (b) information/knowledge representation, (c) algorithm design and (d) implementation. As proof-of-concept of symbolic physical OPEN ACCESS Remote Sens. 2012, 4 2769 model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time, multi-sensor, multi-resolution, application-independent Satellite Image Automatic MapperTM (SIAMTM) is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAMTM, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.
منابع مشابه
Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction
According to existing literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the degree of automation, accur...
متن کاملRemote Sensing
According to literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the Quality Indexes of Operativeness (OQ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012